

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE STRUCTURE AND SYLLABUS

For

B. Tech COMPUTER SCIENCE & ENGINEERING

(Applicable for batches admitted from 2019-2020)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA - 533 003, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE STRUCTURE - R19

I Year – I SEMESTER

Sl.	Course	Subjects	L	Т	Р	Credits
No	Code					
1	HS1101	English	3	0	0	3
2	BS1101	Mathematics - I	3	0	0	3
3	BS1106	Applied Chemistry	3	0	0	3
4	ES1112	Fundamentals of Computer Science	3	0	0	3
5	ES1103	Engineering Drawing	1	0	3	2.5
6	HS1102	English Lab	0	0	3	1.5
7	BS1107	Applied Chemistry Lab	0	0	3	1.5
8	ES1105	IT Workshop	0	0	3	1.5
9	MC1101	Environmental Science	3	0	0	0
	Total Credits				12	19

I Year – II SEMESTER

Sl.	Course	Subjects	L	Т	Р	Credits
No	Code					
1	BS1202	Mathematics – II	3	0	0	3
2	BS1203	Mathematics – III	3	0	0	3
3	BS1204	Applied Physics	3	0	0	3
4	ES1201	Programming for Problem Solving using C	3	0	0	3
5	ES1213	Digital Logic Design	3	0	0	3
6	BS1205	Applied Physics Lab	0	0	3	1.5
7	HS1203	Communication Skills Lab	0	1	2	2
8	ES1202	Programming for Problem Solving using C Lab	0	0	3	1.5
9	PR1201	Engineering Exploration Project	0	0	2	1
10	MC1204	Constitution of India	3	0	0	0
Total Credits			18	1	10	21

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	Т	Р	С
I Year - I Semester		3	0	0	3
	ENGLISH (HS1101)				

Introduction

The course is designed to train students in receptive (listening and reading) as well as productive and interactive (speaking and writing) skills by incorporating a comprehensive, coherent and integrated approach that improves the learners' ability to effectively use English language in academic/ workplace contexts. The shift is from *learning about the language* to *using the language*. On successful completion of the compulsory English language course/s in B.Tech., learners would be confident of appearing for international language qualification/proficiency tests such as IELTS, TOEFL, or BEC, besides being able to express themselves clearly in speech and competently handle the writing tasks and verbal ability component of campus placement tests. Activity based teaching-learning methods would be adopted to ensure that learners would engage in actual use of language both in the classroom and laboratory sessions.

Course Objectives

- ➤ Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- ➤ Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- ➤ Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- ➤ Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Learning Outcomes

At the end of the module, the learners will be able to

- understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information
- > ask and answer general questions on familiar topics and introduce oneself/others
- employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
- > recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- form sentences using proper grammatical structures and correct word forms

<u>Unit 1:</u>

Lesson-1: A Drawer full of happiness from "Infotech English", Maruthi Publications

Lesson-2: Deliverance by Premchand from "The Individual Society", Pearson Publications.

(Non-detailed)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Listening: Listening to short audio texts and identifying the topic. Listening to short audio texts and identifying the context and specific pieces of information to answer a series of questions both in speaking and writing.

Speaking: Asking and answering general questions on familiar topics such as home, family, work, studies and interests. Self introductions and introducing others.

Reading: Skimming text to get the main idea. Scanning to look for specific pieces of information.

Reading for Writing: Paragraph writing (specific topics) using suitable cohesive devices; linkers, sign posts and transition signals; mechanics of writing - punctuation, capital letters.

Vocabulary: Technical vocabulary from across technical branches (20) GRE Vocabulary (20) (Antonyms and Synonyms, Word applications) Verbal reasoning and sequencing of words.

Grammar: Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countables and uncountables; singular and plural basic sentence structures; simple question form - wh-questions; word order in sentences.

Pronunciation: Vowels, Consonants, Plural markers and their realizations

<u>Unit 2:</u>

Lesson-1: Nehru's letter to his daughter Indira on her birthday from "Infotech English", Maruthi Publications

Lesson-2: Bosom Friend by Hira Bansode from "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts, both in speaking and writing.

Speaking: Discussion in pairs/ small groups on specific topics followed by short structured talks. Functional English: Greetings and leave takings.

Reading: Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary Analogies (20 words) (Antonyms and Synonyms, Word applications)

Grammar: Use of articles and zero article; prepositions.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Pronunciation: Past tense markers, word stress-di-syllabic words

<u>Unit 3:</u>

Lesson-1: Stephen Hawking-Positivity 'Benchmark' from "Infotech English", Maruthi Publications

Lesson-2: Shakespeare's Sister by Virginia Woolf from "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Listening for global comprehension and summarizing what is listened to, both in speaking and writing.

Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed. Functional English: Complaining and Apologizing.

Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension. Critical reading.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions. Letter writing-types, format and principles of letter writing. E-mail etiquette, Writing CV's.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, sequencing of words

Grammar: Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Pronunciation: word stress-poly-syllabic words

<u>Unit 4:</u>

Lesson-1: Liking a Tree, Unbowed: Wangari Maathai-biography from "**Infotech English**", Maruthi Publications

Lesson-2: Telephone Conversation-Wole Soyinka from "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Making predictions while listening to conversations/ transactional dialogues without video (only audio); listening to audio-visual texts.

Speaking: Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions. Functional English: Permissions, Requesting, Inviting.

Reading: Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicative process or display complicated data.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters.

Grammar: Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of antonyms

Pronunciation: Contrastive Stress

<u>Unit 5:</u>

Lesson-1: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications

Lesson-2: Still I Rise by Maya Angelou from "The Individual Society", Pearson Publications. (Nondetailed)

Listening: Identifying key terms, understanding concepts and interpreting the concepts both in speaking and writing.

Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides. Functional English: Suggesting/Opinion giving.

Reading: Reading for comprehension. RAP Strategy Intensive reading and Extensive reading techniques.

Reading for Writing: Writing academic proposals- writing research articles: format and style.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, matching emotions.

Grammar: Editing short texts – identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Pronunciation: Stress in compound words

Prescribed text books for theory:

- 1. "Infotech English", Maruthi Publications. (Detailed)
- 2. "The Individual Society", Pearson Publications. (Non-detailed)

Reference books:

- 1. Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Vear - I Semester		L	Т	Р	С
1 1 ear - 1 Semester		3	0	0	3
	MATHEMATICS-I (BS1101)				
	(Common to all Branch's for I Year B. Tecl	h)			

Course Objectives:

- This course will illuminate the students in the concepts of calculus.
- To enlighten the learners in the concept of differential equations and multivariable calculus.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- utilize mean value theorems to real life problems (L3)
- solve the differential equations related to various engineering fields (L3)
- familiarize with functions of several variables which is useful in optimization (L3)
- Apply double integration techniques in evaluating areas bounded by region (L3)
- students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional and 3-dimensional coordinate systems (L5)

UNIT I: Sequences, Series and Mean value theorems: (10 hrs)

Sequences and Series: Convergences and divergence – Ratio test – Comparison tests – Integral test – Cauchy's root test – Alternate series – Leibnitz's rule.

Mean Value Theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders.

UNIT II: Differential equations of first order and first degree: (10 hrs)

Linear differential equations – Bernoulli's equations – Exact equations and equations reducible to exact form.

Applications: Newton's Law of cooling – Law of natural growth and decay – Orthogonal trajectories – Electrical circuits.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT III: Linear differential equations of higher order:

Non-homogeneous equations of higher order with constant coefficients – with non-homogeneous term of the type e^{ax} , sin ax, cos ax, polynomials in x^n , $e^{ax} V(x)$ and $x^nV(x)$ – Method of Variation of parameters.

Applications: LCR circuit, Simple Harmonic motion.

UNIT IV: Partial differentiation:

Introduction – Homogeneous function – Euler's theorem – Total derivative – Chain rule – Jacobian – Functional dependence – Taylor's and Mc Laurent's series expansion of functions of two variables. Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method (with constraints).

UNIT V: Multiple integrals:

Double and Triple integrals – Change of order of integration – Change of variables. Applications: Finding Areas and Volumes.

Text Books:

- 1. **B. S. Grewal**, Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.
- 2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2. Joel Hass, Christopher Heil and Maurice D. Weir, Thomas calculus, 14th Edition, Pearson.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 2013.
- 4. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.

(10 hrs)

(10 hrs)

(8 hrs)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	Т	Р	С
		3	0	0	3
	APPLIED CHEMISTRY (BS1106)				

Knowledge of basic concepts of Chemistry for Engineering students will help them as professional engineers later in design and material selection, as well as utilizing the available resources.

Learning Objectives:

- *Importance* of usage of plastics in household appliances and composites (FRP) in aerospace and automotive industries.
- *Outline* the basics for the construction of electrochemical cells, batteries and fuel cells. Understand the mechanism of corrosion and how it can be prevented.
- *Express* the increase in demand as wide variety of advanced materials are introduced; which have excellent engineering properties.
- *Explain* the crystal structures, and the preparation of semiconductors. Magnetic properties are also studied.
- *Recall* the increase in demand for power and hence alternative sources of power are studied due to depleting sources of fossil fuels. Advanced instrumental techniques are introduced.

UNIT I POLYMER TECHNOLOGY

Polymerisation:- Introduction-methods of polymerization (emulsion and suspension)-physical and mechanical properties.

Plastics: Compounding-fabrication (compression, injection, blown film, extrusion) - preparation, properties and applications of PVC, polycarbonates and Bakelite-mention some examples of plastic materials used in electronic gadgets, recycling of e-plastic waste.

Elastomers:- Natural rubber-drawbacks-vulcanization-preparation, properties and applications of synthetic rubbers (Buna S, thiokol and polyurethanes).

Composite materials: Fiber reinforced plastics-conducting polymers-biodegradable polymers-biopolymers-biomedical polymers.

Learning Outcomes: At the end of this unit, the students will be able to

- *Outline* the properties of polymers and various additives added and different methods of forming plastic materials.
- *Explain* the preparation, properties and applications of some plastic materials.
- *Interpret* the mechanism of conduction in conducting polymers .
- *Discuss* natural and synthetic rubbers and their applications.

UNIT II: ELECTROCHEMICAL CELLS AND CORROSION

Single electrode potential-Electrochemical series and uses of series-standard hydrogen electrode, calomel electrode-concentration cell-construction of glass electrode-Batteries: Dry cell, Ni-Cd cells, Ni-Metal hydride cells, Li ion battery, zinc air cells–Fuel cells: H₂-O₂, CH₃OH-O₂, phosphoric acid, molten carbonate.

Corrosion:-Definition-theories of corrosion (chemical and electrochemical)-galvanic corrosion, differential aeration corrosion, stress corrosion, waterline corrosion-passivity of metals-galvanic series-factors influencing rate of corrosion-corrosion control (proper designing, cathodic protection)-Protective coatings: Surface preparation, cathodic and anodic coatings, electroplating, electroless plating (nickel). Paints (constituents, functions, special paints).

Learning Outcomes: At the end of this unit, the students will be able to

• *Explain* the theory of construction of battery and fuel cells.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

• *Categorize* the reasons for corrosion and study some methods of corrosion control.

UNIT III: MATERIAL CHEMISTRY

Part I : *Non-elemental semiconducting materials:* - Stoichiometric, controlled valency & chalcogen photo/semiconductors-preparation of semiconductors (distillation, zone refining, Czochralski crystal pulling, epitaxy, diffusion, ion implantation) - Semiconductor devices (p-n junction diode as rectifier, junction transistor).

Insulators & magnetic materials: electrical insulators-ferro and ferri magnetism-Hall effect and its applications.

Part II:

Nano materials:- Introduction-sol-gel method- characterization by BET, SEM and TEM methodsapplications of graphene-carbon nanotubes and fullerenes: Types, preparation and applications *Liquid crystals:-* Introduction-types-applications.

Super conductors:-Type –I, Type II-characteristics and applications

Learning Outcomes: At the end of this unit, the students will be able to

- Understand the importance of materials like nanomaterials and fullerenes and their uses.
- Understand liquid crystals and superconductors.
- *Understand* the preparation of semiconductors.

UNIT IV: ADVANCED CONCEPTS/TOPICS IN CHEMISTRY

Computational chemistry: Introduction, Ab Initio studies

Molecular switches: characteristics of molecular motors and machines, Rotaxanes and Catenanes as artificial molecular machines, prototypes – linear motions in rotaxanes, an acid-base controlled molecular shuttle, a molecular elevator, an autonomous light-powered molecular motor

Learning Outcomes: At the end of this unit, the students will be able to

- Obtain the knowledge of computational chemistry
- Understand importance molecular machines

UNIT V: SPECTROSCOPIC TECHNIQUES & NON CONVENTIONAL ENERGY SOURCES Part A: SPECTROSCOPIC TECHNIQUES

Electromagnetic spectrum-UV (laws of absorption, instrumentation, theory of electronic spectroscopy, Frank-condon principle, chromophores and auxochromes, intensity shifts, applications), FT-IR (instrumentation and IR of some organic compounds, applications)-magnetic resonance imaging and CT scan (procedure & applications).

Part B: NON CONVENTIONAL ENERGY SOURCES

Design, working, schematic diagram, advantages and disadvantages of photovoltaic cell, hydropower, geothermal power, tidal and wave power, ocean thermal energy conversion.

Learning Outcomes: At the end of this unit, the students will be able to

- understand the principles of different analytical instruments.
- explain the different applications of analytical instruments.
- design sources of energy by different natural sources.

Standard Books:

1. Engineering Chemistry by Jain and Jain; Dhanpat Rai Publicating Co.

Reference Books:

1. Engineering Chemistry by Shikha Agarwal; Cambridge University Press, 2019 edition.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	Т	Р	С		
		3	0	0	3		
F	FUNDAMENTALS OF COMPUTER SCIENCE (ES1112)						

COURSE OBJECTIVES:

This course is designed to:

- 1. Explain the concepts of computers and classify based on type and generation.
- 2. Demonstrate the techniques of writing algorithms pseudo codes & schematic flow of logic in software development process.
- 3. Teach about the purpose of networks and types of networks and media to connect the computers
- 4. Teach about Operating Systems and its concepts.
- 5. Illustrate about database architecture and its components
- 6. Illustrate about distributed computing, peer to peer, grid, cloud on demand and utility computing.

UNIT I:

A Simple Computer System: Central processing unit, the further need of secondary storage, Types of memory, Hardware, Software and people.

Peripheral Devices: Input, Output and storage, Data Preparation, Factors affecting input, Input devices, Output devices, Secondary devices, Communication between the CPU and Input/ Output devices. (Text Book 1)

UNIT II:

Problem Solving and Programming: Algorithm development, Flowcharts, Looping, some programming features, Pseudo code, the one-zero game, some structured programming concepts, documents.

Programming Languages: Machine Language and assembly language, high -level and low level languages, Assemblers, Compilers, and Interpreters (Text Book 1)

UNIT III:

Computer Networks : Introduction to computer Networks, Network topologies-Bus topology, star topology, Ring topology, Mesh topology, Hybrid topology, Types of Networks: Local area Network, Wide Area Networks, Metropolitan Networks, Campus/ Corporate Area Network, Personal Area Network, Network Devices- Hub, Repeater, Switch, Bridge, Router, Gateway, Network interface Card, Open System Inter connection Model (Text Book 2)

Operating systems: Introduction, Evolution of operating systems, Process Management- Process control block, Process operations, Process scheduling, Command Interpreter, Popular operating systems-Microsoft DOS, Microsoft Windows, UNIX and Linux. (Text Book 2)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT IV:

Database Systems: File-Oriented Approach, Database-oriented Approach-Components of Database system, Advantages & Disadvantages of Database approach, Applications of Database systems, Database views, Three-schema architecture, Database models-Hierarchical model, Network Model, relational Model, Object-oriented Data Model, Components of database management systems, Retrieving Data through Queries (Text Book 2)

Computer Systems and Development: Investigation, Analysis, Design, system processing and general program design, Presentation to management and users, Implementation, Documents. (Text Book 1)

UNIT V:

Emerging Computer Technologies: Distributed Networking, Peer-to-peer Computing, Categorization of Peer-to-peer system Applications of Peer-to-peer networks, Grid Computing-components of Grid computing, Applications of Grid computing, Cloud Computing-characteristics of cloud computing systems, cloud computing services, cloud computing architecture, cloud computing applications, Cloud computing concerns

Wireless Networks: Wireless network operations, Types of wireless networks, security in wireless Networks, Limitations of wireless Networks, Bluetooth – Bluetooth Piconets, Avoiding Interference in Bluetooth Devices, Bluetooth Security, Differences between Bluetooth and Wireless Networks. (Text Book 2)

TEXT BOOKS:

- 1. An Introduction to Computer studies -Noel Kalicharan-Cambridge
- 2. Fundamentals of Computers -Reema Thareja-Oxford higher education

REFERENCES:

- 1. Introduction to Information Technology ITL education Solution Limited, Pearson
- 2. Computer Science and overview-J. Glenn Brookshear, Dennis Brylow-Pearson

COURSE OUTCOMES:

On completion of the course the student will be able to

- 1. Explain the concept of input and output devices of Computers and how it works and recognize the basic terminology used in computer programming.
- 2. Recognize the Computer networks, types of networks and topologies.
- 3. Summarize the concepts of Operating Systems and Databases.
- 4. Recite the Advanced Computer Technologies like Distributed Computing & Wireless Networks.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	Т	P	С
		1	0	3	2.5
	ENGINEERING DRAWING (ES1103)				

Course Objective: Engineering drawing being the principal method of communication for engineers, the objective is to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scaling etc.

Unit I

Objective: To introduce the students to use drawing instruments and to draw polygons, Engg. Curves.

Polygons: Constructing regular polygons by general methods, inscribing and describing polygons on circles.

Curves: Parabola, Ellipse and Hyperbola by general and special methods, cycloids, involutes, tangents & normals for the curves.

Scales: Plain scales, diagonal scales and vernier scales

Unit II

Objective: To introduce the students to use orthographic projections, projections of points & simple lines. To make the students draw the projections of the lines inclined to both the planes.

Orthographic Projections: Reference plane, importance of reference lines, projections of points in various quadrants, projections of lines, line parallel to both the planes, line parallel to one plane and inclined to other plane.

Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclination and traces.

Unit III

Objective: The objective is to make the students draw the projections of the plane inclined to both the planes.

Projections of planes: regular planes perpendicular/parallel to one reference plane and inclined to the other reference plane; inclined to both the reference planes.

Unit IV

Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to one of the planes.

Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis inclined to both the planes.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Unit V

Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and vice versa. Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric

views. Computer Aided Design, Drawing practice using Auto CAD, Creating 2D&3D drawings of objects using Auto CAD

Note: In the End Examination there will be no question from CAD.

TEXT BOOKS:

- 1. Engineering Drawing by N.D. Butt, Chariot Publications
- 2. Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers

REFERENCE BOOKS:

- 1. Engineering Drawing by K.L.Narayana & P. Kannaiah, Scitech Publishers
- 2. Engineering Graphics for Degree by K.C. John, PHI Publishers
- 3. Engineering Graphics by PI Varghese, McGrawHill Publishers
- 4. Engineering Drawing + AutoCad K Venugopal, V. Prabhu Raja, New Age

Course Outcome: The student will learn how to visualize 2D & 3D objects.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	Т	Р	С
		0	0	3	1.5
	ENGLISH LAB (HS1102)				

UNIT I:

Vowels, Consonants, Pronunciation, Phonetic Transcription

UNIT II:

Past tense markers, word stress-di-syllabic words, Poly-Syllabic words

UNIT III:

Rhythm & Intonation

UNIT IV:

Contrastive Stress (Homographs)

UNIT V:

Word Stress: Weak and Strong forms Stress in compound words

References books:

- 1. Infotech English, Maruthi Publications (with Compact Disc).
- 2. Exercises in Spoken English Part 1,2,3,4, OUP and CIEFL.
- 3. English Pronunciation in use- Mark Hancock, Cambridge University Press.
- 4. English Phonetics and Phonology-Peter Roach, Cambridge University Press.
- 5. English Pronunciation in use- Mark Hewings, Cambridge University Press.
- 6. English Pronunciation Dictionary- Daniel Jones, Cambridge University Press.
- 7. English Phonetics for Indian Students- P. Bala Subramanian, Mac Millan Publications.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	Т	Ρ	С
		0	0	3	1.5
	APPLIED CHEMISTRY LAB (BS1107)				

Introduction to Chemistry laboratory – Molarity, normality, primary, secondary standard solutions, volumetric titrations, quantitative analysis

- 1. Determination of HCl using standard Na₂CO₃ solution.
- 2. Determination of alkalinity of a sample containing Na₂CO₃ and NaOH.
- 3. Determination of Mn (II) using standard oxalic acid solution.
- 4. Determination of ferrous iron using standard K₂Cr₂O₇ solution.
- 5. Determination of copper (II) using standard hypo solution.
- 6. Determination of temporary and permanent hardness of water using standard EDTA solution.
- 7. Determination of iron (III) by a colorimetric method.
- 8. Determination of the concentration of acetic acid using sodium hydroxide (pH-metry method).
- 9. Determination of the concentration of strong acid vs strong base (by conductometric method).
- 10. Determination of strong acid vs strong base (by potentiometric method).
- 11. Determination of Mg^{+2} present in an antacid.
- 12. Determination of CaCO₃ present in an egg shell.
- 13. Estimation of Vitamin C.
- 14. Determination of phosphoric content in soft drinks.
- 15. Adsorption of acetic acid by charcoal.
- 16. Preparation of nylon-6, 6 and Bakelite (demonstration only).

Of the above experiments at-least 10 assessment experiments should be completed in a semester.

Outcomes: The students entering into the professional course have practically very little exposure to lab classes. The experiments introduce volumetric analysis; redox titrations with different indicators; EDTA titrations; then they are exposed to a few instrumental methods of chemical analysis. Thus at the end of the lab course, the student is exposed to different methods of chemical analysis and use of some commonly employed instruments. They thus acquire some experimental skills.

Reference Books

1. A Textbook of Quantitative Analysis, Arthur J. Vogel.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	Т	P	С
		0	0	3	1.5
	IT WORKSHOP (ES1105)				

COURSE OBJECTIVES:

The objective of IT Workshop is to

- 1. Explain the internal parts of a computer, peripherals, I/O ports, connecting cables
- 2. Demonstrate basic command line interface commands on Linux
- 3. Teach the usage of Internet for productivity and self paced lifelong learning
- 4. Describe about Compression, Multimedia and Antivirus tools
- 5. Demonstrate Office Tools such as Word processors, Spreadsheets and Presentation tools

Computer Hardware:

Experiment 1: Identification of peripherals of a PC, Laptop, Server and Smart Phones: Prepare a report containing the block diagram along with the configuration of each component and its functionality, Input/ Output devices, I/O ports and interfaces, main memory, cache memory and secondary storage technologies, digital storage basics, networking components and speeds.

Operating Systems:

Experiment 2: Virtual Machine setup:

- Setting up and configuring a new Virtual Machine
- Setting up and configuring an existing Virtual Machine
- Exporting and packaging an existing Virtual Machine into a portable format

Experiment 2: Operating System installation:

• Installing an Operating System such as Linux on Computer hardware.

Experiment 3: Linux Operating System commands:

- o General command syntax
- Basic *help* commands
- Basic File system commands
- Date and Time
- Basic Filters and Text processing
- Basic File compression commands
- o Miscellaneous: apt-get, vi editor

Networking and Internet:

Experiment 4: Networking Commands:

o ping, ssh, ifconfig, scp, netstat, ipstat, nslookup, traceroute, telnet, host, ftp, arp, wget,route

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Experiment 5: Internet Services:

- Web Browser usage and advanced settings like LAN, proxy, content, privacy, security, cookies, extensions/ plugins
- o Antivirus installation, configuring a firewall, blocking pop-ups
- Email creation and usage, Creating a Digital Profile on LinkedIn
- o Source control on Github, Hackerrank, Codechef, HackerEarth, etc
- Google hangout/ Skype/ gotomeeting video conferencing
- o archive.org for accessing archived resources on the web

Productivity Tools:

Experiment 6: Demonstration and Practice on archival and compression tools

- o scanning and image editing tools
- OCR and text extraction
- o audio players, recording using Mic, editing, podcast preparation
- o video players, recording using webcam/camcorder, editing
- o podcast, screencast, vodcast, webcasting

Office Tools:

Experiment 7: Demonstration and Practice on Text Editors like Notepad++, Sublime Text, Atom, Brackets, Visual code, etc

Experiment 8: Demonstration and practice on Microsoft Word, Power Point

Experiment 9: Demonstration and practice on Microsoft Excel.

Experiment 10: Demonstration and practice on LaTeX and produce professional pdf documents.

Experiment 12: Cloud based productivity enhancement and collaboration tools:

- Store, sync, and share files with ease in the cloud using Google Drive
- Document creation and editing text documents in your web browser using Google docs
- o Handle task lists, create project plans, analyze data with charts and filters using Google Sheets
- o Create pitch decks, project presentations, training modules using Google Slides
- Manage event registrations, create quizzes, analyze responses using Google Forms
- o Build public sites, internal project hubs using Google Sites
- Online collaboration through cross-platform support using Jamboard
- Keep track of important events, sharing one's schedule, and create multiple calendars using Google Calendar

TEXT BOOKS:

- 1. Computer Fundamentals, Anita Goel, Pearson Education, 2017
- 2. PC Hardware Trouble Shooting Made Easy, TMH

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

REFERENCES:

1. Essential Computer and IT Fundamentals for Engineering and Science Students, Dr.N.B.Vekateswarlu, S.Chand

WEB RESOURCES:

- 1. <u>https://explorersposts.grc.nasa.gov/post631/2006-2007/computer_basics/ComputerPorts.doc</u>
- 2. <u>https://explorersposts.grc.nasa.gov/post631/2006-2007/bitsnbyte/Digital_Storage_Basics.doc</u>
- 3. <u>https://www.thegeekstuff.com/2009/07/linux-ls-command-examples</u>
- 4. https://www.pcsuggest.com/basic-linux-commands/
- 5. <u>https://www.vmware.com/pdf/VMwarePlayerManual10.pdf</u>
- 6. <u>https://geek-university.com/vmware-player/manually-install-a-guest-operating-system/</u>
- 7. https://gsuite.google.com/learning-center/products/#!/

COURSE OUTCOMES:

Students should be able to:

- 1. Assemble and disassemble components of a PC
- 2. Construct a fully functional virtual machine, Summarize various Linux operating system commands,
- 3. Secure a computer from cyber threats, Learn and practice programming skill in Github, Hackerrank, Codechef, HackerEarth etc.
- 4. Recognize characters & extract text from scanned images, Create audio files and podcasts
- 5. Create video tutorials and publishing, Use office tools for documentation, Build interactive presentations, Build websites, Create quizzes & analyze responses.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	Т	Ρ	С
		3	0	0	0
	ENVIRONMENTAL SCIENCE (MC1101)				

Learning Objectives:

The objectives of the course are to impart:

- Overall understanding of the natural resources.
- Basic understanding of the ecosystem and its diversity.
- Acquaintance on various environmental challenges induced due to unplanned anthropogenic activities.
- An understanding of the environmental impact of developmental activities.
- Awareness on the social issues, environmental legislation and global treaties.

UNIT-I:

Multidisciplinary nature of Environmental Studies: Definition, Scope and Importance – Sustainability: Stockholm and Rio Summit–Global Environmental Challenges: Global warming and climate change, acid rains, ozone layer depletion, population growth and explosion, effects;. Role of information technology in environment and human health.

Ecosystems: Concept of an ecosystem. - Structure and function of an ecosystem; Producers, consumers and decomposers. - Energy flow in the ecosystem - Ecological succession. - Food chains, food webs and ecological pyramids; Introduction, types, characteristic features, structure and function of Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems.

UNIT-II:

Natural Resources: Natural resources and associated problems.

Forest resources: Use and over – exploitation, deforestation – Timber extraction – Mining, dams and other effects on forest and tribal people.

Water resources: Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems.

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources.

Food resources: World food problems, changes caused by non-agriculture activities-effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity.

Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy sources.

Land resources: Land as a resource, land degradation, Wasteland reclamation, man induced landslides, soil erosion and desertification; Role of an individual in conservation of natural resources; Equitable use of resources for sustainable lifestyles.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT-III:

Biodiversity and its conservation: Definition: genetic, species and ecosystem diversity-classification - Value of biodiversity: consumptive use, productive use, social-Biodiversity at national and local levels. India as a mega-diversity nation - Hot-sports of biodiversity - Threats to biodiversity: habitat loss, man-wildlife conflicts. - Endangered and endemic species of India – Conservation of biodiversity: conservation of biodiversity.

$\mathbf{UNIT} - \mathbf{IV}$

Environmental Pollution: Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Noise pollution, Nuclear hazards. Role of an individual in prevention of pollution. - Pollution case studies, Sustainable Life Studies. Impact of Fire Crackers on Men and his well being.

Solid Waste Management: Sources, Classification, effects and control measures of urban and industrial solid wastes. Consumerism and waste products, Biomedical, Hazardous and e – waste management.

UNIT – V

Social Issues and the Environment: Urban problems related to energy -Water conservation, rain water harvesting-Resettlement and rehabilitation of people; its problems and concerns. Environmental ethics: Issues and possible solutions. Environmental Protection Act -Air (Prevention and Control of Pollution) Act. –Water (Prevention and control of Pollution) Act -Wildlife Protection Act -Forest Conservation Act-Issues involved in enforcement of environmental legislation. -Public awareness.

UNIT - VI

Environmental Management: Impact Assessment and its significance various stages of EIA, preparation of EMP and EIS, Environmental audit. Ecotourism, Green Campus – Green business and Green politics.

The student should Visit an Industry / Ecosystem and submit a report individually on any issues related to Environmental Studies course and make a power point presentation.

Text Books:

- 1. Environmental Studies, K. V. S. G. Murali Krishna, VGS Publishers, Vijayawada
- 2. Environmental Studies, R. Rajagopalan, 2nd Edition, 2011, Oxford University Press.
- 3. Environmental Studies, P. N. Palanisamy, P. Manikandan, A. Geetha, and K. Manjula Rani; Pearson Education, Chennai

Reference:

- 1. Text Book of Environmental Studies, Deeshita Dave & P. Udaya Bhaskar, Cengage Learning.
- 2. A Textbook of Environmental Studies, Shaashi Chawla, TMH, New Delhi
- 3. Environmental Studies, Benny Joseph, Tata McGraw Hill Co, New Delhi
- 4. Perspectives in Environment Studies, Anubha Kaushik, C P Kaushik, New Age International Publishers, 2014

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - II Semester		L	Т	P	С
		3	0	0	3
	MATHEMATICS - II (BS1202)				

Course Objectives:

- To instruct the concept of Matrices in solving linear algebraic equations
- To elucidate the different numerical methods to solve nonlinear algebraic equations
- To disseminate the use of different numerical techniques for carrying out numerical integration.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, Gauss Seidel (L3)
- evaluate approximating the roots of polynomial and transcendental equations by different algorithms (L5)
- apply Newton's forward & backward interpolation and Lagrange's formulae for equal and unequal intervals (L3)
- apply different algorithms for approximating the solutions of ordinary differential equations to its analytical computations (L3)

Unit I: Solving systems of linear equations, Eigen values and Eigen vectors: (10 hrs)

Rank of a matrix by echelon form and normal form – Solving system of homogeneous and non-homogeneous equations linear equations – Gauss Elimination for solving system of equations – Eigen values and Eigen vectors and their properties.

Unit-II: Cayley-Hamilton theorem and Quadratic forms: (10 hrs)

Cayley - Hamilton theorem (without proof) – Finding inverse and power of a matrix by Cayley-Hamilton theorem – Reduction to Diagonal form – Quadratic forms and nature of the quadratic forms – Reduction of quadratic form to canonical forms by orthogonal transformation.

Singular values of a matrix, singular value decomposition (Ref. Book -1).

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT III: Iterative methods:

Introduction – Bisection method – Secant method – Method of false position – Iteration method – Newton-Raphson method (One variable and simultaneous Equations) – Jacobi and Gauss-Seidel methods for solving system of equations.

UNIT IV: Interpolation:

Introduction – Errors in polynomial interpolation – Finite differences – Forward differences – Backward differences – Central differences – Relations between operators – Newton's forward and backward formulae for interpolation – Interpolation with unequal intervals – Lagrange's interpolation formula – Newton's divide difference formula.

UNIT V: Numerical integration and solution of ordinary differential equations: (10 hrs)

Trapezoidal rule – Simpson's 1/3rd and 3/8th rule – Solution of ordinary differential equations by Taylor's series – Picard's method of successive approximations – Euler's method – Runge-Kutta method (second and fourth order).

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.
- 2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- 1. David Poole, Linear Algebra- A modern introduction, 4th Edition, Cengage.
- **2. Steven C. Chapra,** Applied Numerical Methods with MATLAB for Engineering and Science, Tata Mc. Graw Hill Education.
- **3.** M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications.
- 4. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press.

(8 hrs)

(10 hrs)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - II Semester		L	Т	Р	С
		3	0	0	3
	MATHEMATICS - III (BS1203)				

Course Objectives:

- To familiarize the techniques in partial differential equations
- To furnish the learners with basic concepts and techniques at plus two level to lead them into advanced level by handling various real world applications.

Course Outcomes: At the end of the course, the student will be able to

- interpret the physical meaning of different operators such as gradient, curl and divergence (L5)
- estimate the work done against a field, circulation and flux using vector calculus (L5)
- apply the Laplace transform for solving differential equations (L3)
- find or compute the Fourier series of periodic signals (L3)
- know and be able to apply integral expressions for the forwards and inverse Fourier transform to a range of non-periodic waveforms (L3)
- identify solution methods for partial differential equations that model physical processes (L3)

Unit – I: Vector calculus:

Vector Differentiation: Gradient – Directional derivative – Divergence – Curl – Scalar Potential.

Vector Integration: Line integral – Work done – Area – Surface and volume integrals – Vector integral theorems: Greens, Stokes and Gauss Divergence theorems (without proof).

Unit –II: Laplace Transforms:

Laplace transforms of standard functions – Shifting theorems – Transforms of derivatives and integrals – Unit step function – Dirac's delta function – Inverse Laplace transforms – Convolution theorem (with out proof).

Applications: Solving ordinary differential equations (initial value problems) using Laplace transforms.

(10 hrs)

(10 hrs)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Unit –III: Fourier series and Fourier Transforms:

Fourier Series: Introduction – Periodic functions – Fourier series of periodic function – Dirichlet's conditions – Even and odd functions – Change of interval – Half-range sine and cosine series.

Fourier Transforms: Fourier integral theorem (without proof) – Fourier sine and cosine integrals – Sine and cosine transforms – Properties – inverse transforms – Finite Fourier transforms.

Unit -IV: PDE of first order:

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

UNIT V: Second order PDE and Applications:

Second order PDE: Solutions of linear partial differential equations with constant coefficients – RHS term of the type e^{ax+by} , sin(ax+by), cos(ax+by), $x^m y^n$.

Applications of PDE: Method of separation of Variables – Solution of One dimensional Wave, Heat and two-dimensional Laplace equation.

Text Books:

- 1. **B. S. Grewal,** Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.
- 2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2. **Dean. G. Duffy,** Advanced Engineering Mathematics with MATLAB, 3rd Edition, CRC Press.
- 3. Peter O' Neil, Advanced Engineering Mathematics, Cengage.
- 4. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.

(8 hrs)

(10 hrs)

(10 hrs)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - II Semester		L	Т	P	С
		3	0	0	3
	APPLIED PHYSICS (BS1204)				

Course Objectives:

Physics curriculum which is re-oriented to the needs of Circuital branches of graduate engineering courses offered by Jawaharlal Nehru Technological University Kakinada that serves as a transit to understand the branch specific advanced topics. The course is designed to:

- Impart Knowledge of Physical Optics phenomena like Interference and Diffraction required to design instruments with higher resolution.
- Understand the physics of Semiconductors and their working mechanism for their utility in sensors.
- > To impart the knowledge of materials with characteristic utility in appliances.

<u>UNIT-I</u>

(**10hrs**)

WAVE OPTICS: Principle of Superposition - Interference of light - Conditions for sustained Interference - Interference in thin films (reflected geometry) - Newton's Rings (reflected geometry).

Diffraction - Fraunhofer Diffraction - Diffraction due to Single slit (quantitative), Double slit, N -slits and circular aperture (qualitative) – Intensity distribution curves - Diffraction Grating – Grating spectrum – missing order – resolving power – Rayleigh's criterion – Resolving powers of Microscope, Telescope and grating (qualitative).

Unit Outcomes:

The students will be able to

- > explain the need of coherent sources and the conditions for sustained interference.
- > analyze the differences between interference and diffraction with applications.
- > illustrate the resolving power of various optical instruments.

UNIT-II

(9hrs)

QUANTUM MECHANICS: Introduction – Matter waves – de Broglie's hypothesis – Davisson-Germer experiment – G. P. Thomson experiment – Heisenberg's Uncertainity Principle –interpretation of wave function – Schröedinger Time Independent and Time Dependent wave equations – Particle in a potential box.

Unit Outcomes:

The students will be able to

- > explain the fundamental concepts of quantum mechanics.
- > analyze the physical significance of wave function.
- > apply Schrödinger's wave equation for energy values of a free particle.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT-III

FREE ELECTRON THEORY & BAND THEORY OF SOLIDS : Introduction - Classical free electron theory (merits and demerits only) - Quantum Free electron theory – electrical conductivity based on quantum free electron theory - Fermi Dirac distribution function - Temperature dependence of Fermi-Dirac distribution function - expression for Fermi energy -

Density of states .

Bloch's theorem (qualitative) – Kronig-Penney model(qualitative) – energy bands in crystalline solids – E Vs K diagram – classification of crystalline solids – effective mass of electron – m^{*} Vs K diagram concept of hole.

Unit Outcomes:

The students will be able to

- > explain the various electron theories.
- **calculate** the Fermi energy.
- > analyze the physical significance of wave function .
- > interpret the effects of temperature on Fermi Dirac distribution function.
- **summarise** various types of solids based on band theory.

UNIT-IV

SEMICONDUCTOR PHYSICS: Introduction - Intrinsic semi conductors - density of charge carriers -Electrical conductivity - Fermi level - extrinsic semiconductors - p-type & n-type - Density of charge carriers - Dependence of Fermi energy on carrier concentration and temperature - Hall effect- Hall coefficient - Applications of Hall effect - Drift and Diffusion currents - Einstein's equation.

Learning Outcomes:

The students will be able to

- classify the energy bands of semiconductors.
- > outline the properties of n-type and p-type semiconductors.
- > identify the type of semiconductor using Hall effect.

UNIT-V

(10 hrs)

MAGNETISM & DIELECTRICS: Introduction – Magnetic dipole moment – Magnetization – Magnetic susceptibility and permeability - Origin of permanent magnetic moment - Bohr magneton -Classification of magnetic materials: Dia, para & Ferro - Domain concept of Ferromagnetism -Hysteresis – soft and hard magnetic materials – applications of Ferromagnetic material.

Introduction - Dielectic polarization - Dielectric Polarizability, Susceptibility and Dielectric constanttypes of polarizations: Electronic and Ionic (Quantitative), Orientational polarizations (qualitative) -Lorentz Internal field - Claussius-Mossoti equation - Frequency dependence of polarization -Applications of dielectrics.

(10hrs)

(9hrs)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Unit Outcomes:

The students will be able to

- > explain the concept of polarization in dielectric materials.
- > summarize various types of polarization of dielectrics .
- > interpret Lorentz field and Claussius- Mosotti relation in dielectrics.
- > classify the magnetic materials based on susceptibility and their temperature dependence.
- > explain the applications of dielectric and magnetic materials .
- > Apply the concept of magnetism to magnetic devices.

TEXT BOOKS:

- 1. "A Text book of Engineering Physics" by M.N. Avadhanulu, P.G.Kshirsagar S.Chand Publications, 2017.
- 2. "Engineering Physics" by D.K.Bhattacharya and Poonam Tandon, Oxford press (2015).
- 3. "Engineering Physics" by R.K Gaur. and S.L Gupta., Dhanpat Rai publishers, 2012.

REFERENCE BOOKS:

- 1. "Engineering Physics" by M. R. Srinivasan, New Age international publishers (2009).
- 2. "Optics" by Ajoy Ghatak, 6th Edition McGraw Hill Education, 2017.
- 3. "Solid State Physics" by A. J. Dekker, Mc Millan Publishers (2011).

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - II Semester PROG		L	Т	P	С	
		3	0	0	3	
PROGRAMMING FOR PROBLEM SOLVING USING C (ES1201)						

COURSE OBJECTIVES:

The objectives of Programming for Problem Solving Using C are

- 1) To learn about the computer systems, computing environments, developing of a computer program and Structure of a C Program
- 2) To gain knowledge of the operators, selection, control statements and repetition in C
- 3) To learn about the design concepts of arrays, strings, enumerated structure and union types. To learn about their usage.
- 4) To assimilate about pointers, dynamic memory allocation and know the significance of Preprocessor.
- 5) To assimilate about File I/O and significance of functions

UNIT I

Introduction to Computers: Computer Systems, Computing Environments, Computer languages, Creating and running Programs, Computer Numbering System, Storing Integers, Storing Real Numbers **Introduction to the C Language:** Background, C Programs, Identifiers, Types, Variable, Constants, Input/output, Programming Examples, Scope, Storage Classes and Type Qualifiers, Tips and Common Programming Errors Key Terms, Summary, Practice Seat.

Structure of a C Program: Expressions Precedence and Associativity, Side Effects, Evaluating Expressions, Type Conversion Statements, Simple Programs, Command Line Arguments Tips and Common Errors, Key Terms, Summary, Practice Sets.

UNIT II

Bitwise Operators: Exact Size Integer Types, Logical Bitwise Operators, Shift Operators, Tips and Common Programming Errors, Key Terms, Summary, Practice Set.

Selection & Making Decisions: Logical Data and Operators, Two Way Selection, Multiway Selection, More Standard Functions, Tips and Common Programming Errors, Key Terms, Summary, Practice Set. **Repetition:** Concept of Loop, Pretest and Post-test Loops, Initialization and Updating, Event and Counter Controlled Loops, Loops in C, Other Statements Related to Looping, Looping Applications, Programming Example The Calculator Program, Tips and Common Programming Errors, Key Terms, Summary, Practice Set.

UNIT III

Arrays: Concepts, Using Array in C, Array Application, Two Dimensional Arrays, Multidimensional Arrays, Programming Example – Calculate Averages, Tips and Common Programming Errors, Key Terms, Summary, Practice Set.

Strings: String Concepts, C String, String Input / Output Functions, Arrays of Strings, String Manipulation Functions String/ Data Conversion, A Programming Example – Morse Code, Tips and Common Programming Errors, Key Terms, Summary, Practice Set.

Enumerated, Structure, and Union: The Type Definition (Type def), Enumerated Types, Structure, Unions, Programming Application, Tips and Common Programming Errors, Key Terms, Summary, Practice Set.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT IV

Pointers: Interdiction, Pointers to pointers, Compatibility, L value and R value, Tips and Common Programming Errors, Key Terms, Summary, Practice Set.

Pointer Applications: Arrays, and Pointers, Pointer Arithmetic and Arrays, Memory Allocation Function, Array of Pointers, Programming Application, Tips and Common Programming Errors, Key Terms, Summary, Practice Set.

Processor Commands: Processor Commands, Tips and Common Programming Errors, Key Terms, Summary, Practice Set.

UNIT V

Text Input / Output: Files, Streams, Standard Library Input / Output Functions, Formatting Input / Output Functions, Character Input / Output Functions, Tips and Common Programming Errors, Key Terms, Summary, Practice Set.

Binary Input / Output: Text versus Binary Streams, Standard Library, Functions for Files, Converting File Type, Tips and Common Programming Errors, Key Terms, Summary, Practice Set.

Functions: Designing, Structured Programs, Function in C, User Defined Functions, Inter-Function Communication, Standard Functions, Passing Array to Functions, Passing Pointers to Functions, Recursion, Passing an Array to Function, Tips and Common Programming Errors, Key Terms, Summary, Practice Set.

COURSE OUTCOMES:

The student will

- 1) Acquires skills to write, compile and debug programs in C language.
- 2) Be able to use different operators, data types and write programs that use two-way/ multi-way selection.
- 3) Acquire knowledge to select the best loop construct for a given problem.
- 4) Design and implements programs to analyze the different pointer applications
- 5) Design and implements C programs with functions, File I/O operations

TEXT BOOKS:

- 1. Programming for Problem Solving, Behrouz A. Forouzan, Richard F.Gilberg, CENGAGE
- 2. The C Programming Language, Brian W.Kernighan, Dennis M. Ritchie, 2e, Pearson
- 3. Programming in C, Reema Thareja, OXFORD

REFERENCE:

- 1. Computer Fundamentals and Programming, Sumithabha Das, Mc Graw Hill
- 2. Programming in C, Ashok N. Kamthane, Amit Kamthane, Pearson
- 3. Computer Fundamentals and Programming in C, Pradip Dey, Manas Ghosh, OXFORD

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - II Semester		L	Т	Р	С
		3	0 0	0	3
	DIGITAL LOGIC DESIGN (ES1213)				

OBJECTIVE:

- To study the basic philosophy underlying the various number systems, negative number representation, binary arithmetic, theory of Boolean algebra and map method for minimization of switching functions.
- To introduce the basic tools for design of combinational and sequential digital logic.
- To learn simple digital circuits in preparation for computer engineering.

UNIT- I: Digital Systems and Binary Numbers

Digital Systems, Binary Numbers, Octal and Hexadecimal Numbers, Complements of Numbers, Signed Binary Numbers, Arithmetic addition and subtraction, 4-bit codes: BCD, EXCESS 3, alphanumeric codes, 9's complement, 2421, etc..

UNIT -II: Concept of Boolean algebra

Basic Theorems and Properties of Boolean algebra, Boolean Functions, Canonical and Standard Forms, Minterms and Maxterms.

Gate level Minimization

Map Method, Three-Variable K-Map, Four Variable K-Maps. Products of Sum Simplification, Sum of Products Simplification, Don't – Care Conditions, NAND and NOR Implementation, Exclusive-OR Function.

UNIT- III:Combinational Logic

Introduction, Analysis Procedure, Binary Adder–Subtractor, Binary Multiplier, Decoders, Encoders, Multiplexers, Demultiplexers, Priority Encoder, Code Converters, Magnitude Comparator, HDL Models of Combinational Circuits.

Realization of Switching Functions Using PROM, PAL and PLA.

UNIT- IV: Synchronous Sequential Logic

Introduction to Sequential Circuits, Storage Elements: Latches, Flip-Flops, RS- Latch Using NAND and NOR Gates, Truth Tables. RS, JK, T and D Flip Flops, Truth and Excitation Tables, Conversion of Flip Flops.

UNIT -V: Registers and Counters

Registers, Shift Registers, Ripple Counters, Synchronous Counters, Ring Counter, Johnson Counter.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

OUTCOMES:

A student who successfully fulfills the course requirements will have demonstrated:

- An ability to define different number systems, binary addition and subtraction, 2's complement representation and operations with this representation.
- An ability to understand the different switching algebra theorems and apply them for

logic functions.

- An ability to define the Karnaugh map for a few variables and perform an algorithmic reduction of logic functions.
- Students will be able to design various logic gates starting from simple ordinary gates to complex programmable logic devices & arrays.
- Students will be able to design various sequential circuits starting from flip-flop to registers and counters.

TEXT BOOKS:

- 1. Digital Design, 5/e, M.Morris Mano, Michael D Ciletti, PEA.
- 2. Fundamentals of Logic Design, 5/e, Roth, Cengage.

REFERENCE BOOKS:

- 1. Digital Logic and Computer Design, M.Morris Mano, PEA.
- 2. Digital Logic Design, Leach, Malvino, Saha, TMH.
- 3. Modern Digital Electronics, R.P. Jain, TMH.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - II Semester		L T	P	С	
		0	0	3	1.5
	APPLIED PHYSIC LAB (ES1205)				

(Any 10 of the following listed 15 experiments)

LIST OF EXPERIMENTS:

- 1. Determination of wavelength of a source-Diffraction Grating-Normal incidence.
- 2. Newton's rings Radius of Curvature of Plano Convex Lens.
- 3. Determination of thickness of a spacer using wedge film and parallel interference fringes.
- 4. Magnetic field along the axis of a current carrying coil Stewart and Gee's apparatus.
- 5. Energy Band gap of a Semiconductor p n junction.
- 6. Characteristics of Thermistor Temperature Coefficients
- 7. Determination of dielectric constant by charging and discharging method
- 8. Determination of resistivity of semiconductor by Four probe method.
- 9. Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
- 10 Measurement of magnetic susceptibility by Gouy's method.
- 11. Dispersive power of diffraction grating.
- 12. Resolving Power of telescope
- 13. Resolving power of grating
- 14. Determination of Hall voltage and Hall coefficients of a given semiconductor using Hall effect.
- 15. Variation of dielectric constant with temperature.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - II Semester		L T	Р	С	
		0	1	2	2
	COMMUNICATION SKILLS LAB (HS1203)			

UNIT I:

Oral Activity: JAM, Hypothetical Situations, Self/Peer Profile Common Errors in Pronunciation, Neutralising Accent

UNIT II:

Oral Activity: Telephonic Etiquette, Role Plays Poster Presentations

UNIT III:

Oral Activity: Oral Presentation skills, Public speaking

Data Interpretation

UNIT IV:

Oral Activity: Group Discussions: Do's and Don'ts- Types, Modalities

UNIT V:

Oral Activity: Interview Skills: Preparatory Techniques, Frequently asked questions, Mock Interviews.

Pronunciation: Connected speech (Pausing, Tempo, Tone, Fluency etc.,)

References:

- 1. Infotech English, Maruthi Publications (with Compact Disc).
- 2. Exercises in Spoken English Part 1,2,3,4, OUP and CIEFL.
- 3. English Pronunciation in use- Mark Hancock, Cambridge University Press.
- 4. English Phonetics and Phonology-Peter Roach, Cambridge University Press.
- 5. English Pronunciation in use- Mark Hewings, Cambridge University Press.
- 6. English Pronunciation Dictionary- Daniel Jones, Cambridge University Press.
- 7. English Phonetics for Indian Students- P. Bala Subramanian, Mac Millan Publications.
- 8. Technical Communication- Meenakshi Raman, Sangeeta Sharma, Oxford University Press.
- 9. Technical Communication- Gajendrea Singh Chauhan, Smita Kashiramka, Cengage Publications.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - II Semester		L	Т	Р	С
		0	0	3	1.5
PROGRA	MMING FOR PROBLEM SOLVING USING C	LAB (I	E S1202))	

Course Objectives:

- 1) Apply the principles of C language in problem solving.
- 2) To design flowcharts, algorithms and knowing how to debug programs.
- 3) To design & develop of C programs using arrays, strings pointers & functions.
- 4) To review the file operations, preprocessor commands.

Exercise 1:

- 1. Write a C program to print a block F using hash (#), where the F has a height of six characters and width of five and four characters.
- 2. Write a C program to compute the perimeter and area of a rectangle with a height of 7 inches and width of 5 inches.
- 3. Write a C program to display multiple variables.

Exercise 2:

- 1. Write a C program to calculate the distance between the two points.
- 2. Write a C program that accepts 4 integers p, q, r, s from the user where r and s are positive and p is even. If q is greater than r and s is greater than p and if the sum of r and s is greater than the sum of p and q print "Correct values", otherwise print "Wrong values".

Exercise 3:

- 1. Write a C program to convert a string to a long integer.
- 2. Write a program in C which is a Menu-Driven Program to compute the area of the various geometrical shape.
- 3. Write a C program to calculate the factorial of a given number.

Exercise 4:

- 1. Write a program in C to display the n terms of even natural number and their sum.
- 2. Write a program in C to display the n terms of harmonic series and their sum. $1 + 1/2 + 1/3 + 1/4 + 1/5 \dots 1/n$ terms.
- 3. Write a C program to check whether a given number is an Armstrong number or not.

Exercise 5:

- 1. Write a program in C to print all unique elements in an array.
- 2. Write a program in C to separate odd and even integers in separate arrays.
- 3. Write a program in C to sort elements of array in ascending order.

Exercise 6:

- 1. Write a program in C for multiplication of two square Matrices.
- 2. Write a program in C to find transpose of a given matrix.

Exercise 7:

- 1. Write a program in C to search an element in a row wise and column wise sorted matrix.
- 2. Write a program in C to print individual characters of string in reverse order.

Exercise 8:

- 1. Write a program in C to compare two strings without using string library functions.
- 2. Write a program in C to copy one string to another string.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Exercise 9:

- 1. Write a C Program to Store Information Using Structures with Dynamically Memory Allocation
- 2. Write a program in C to demonstrate how to handle the pointers in the program.

Exercise 10:

- 1. Write a program in C to demonstrate the use of & (address of) and *(value at address) operator.
- 2. Write a program in C to add two numbers using pointers.

Exercise 11:

- 1. Write a program in C to add numbers using call by reference.
- 2. Write a program in C to find the largest element using Dynamic Memory Allocation.

Exercise 12:

- 1. Write a program in C to swap elements using call by reference.
- 2. Write a program in C to count the number of vowels and consonants in a string using a pointer.

Exercise 13:

- 1. Write a program in C to show how a function returning pointer.
- 2. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc() function.

Exercise 14:

- 1. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc() function. Understand the difference between the above two programs
- 2. Write a program in C to convert decimal number to binary number using the function.

Exercise 15:

- 1. Write a program in C to check whether a number is a prime number or not using the function.
- 2. Write a program in C to get the largest element of an array using the function.

Exercise 16:

- 1. Write a program in C to append multiple lines at the end of a text file.
- 2. Write a program in C to copy a file in another name.
- 3. Write a program in C to remove a file from the disk.

Course Outcomes:

By the end of the Lab, the student

- 1) Gains Knowledge on various concepts of a C language.
- 2) Able to draw flowcharts and write algorithms.
- 3) Able design and development of C problem solving skills.
- 4) Able to design and develop modular programming skills.
- 5) Able to trace and debug a program

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - II Semester		L	Т	Р	С
I Year - II Semester		0	0	2	1
	ENGINEERING EXPLORATION PROJECT (PR	1201)			

COURSE OBJECTIVES:

- Build mindsets & foundations essential for designers
- Learn about the Human-Centered Design methodology and understand their real-world applications
- Use Design Thinking for problem solving methodology for investigating illdefined problems.
- Undergo several design challenges and work towards the final design challenge

Apply Design Thinking on the following Streams to

- Project Stream 1: Electronics, Robotics, IOT and Sensors
- Project Stream 2: Computer Science and IT Applications
- Project Stream 3: Mechanical and Electrical tools
- Project Stream4: Eco-friendly solutions for waste management, infrastructure, safety, alternative energy sources, Agriculture, Environmental science and other fields of engineering.

HOW TO PURSUE THE PROJECT WORK?

- The first part will be learning-based-masking students to embrace the methodology by exploring all the phases of design thinking through the wallet/ bag challenge and podcasts.
- The second part will be more discussion-based and will focus on building some necessary skills as designers and learning about complementary material for human- centered design.
- The class will then divide into teams and they will be working with one another for about 2 3 weeks. These teams and design challenges will be the basis for the final project and final presentation to be presented.
- The teams start with **Design Challenge** and go through all the phases more in depth from coming up with the right question to empathizing to ideating to prototyping and to testing.
- Outside of class, students will also be gathering the requirements, identifying the challenges, usability, importance etc
- At the end, Students are required to submit the final reports, and will be evaluated by the faculty.

TASKS TO BE DONE:

Task 1: Everyone is a Designer

• Understand class objectives & harness the designer mindset

Task 2: The Wallet/Bag Challenge and Podcast

- Gain a quick introduction to the design thinking methodology
- Go through all stages of the methodology through a simple design challenge
- Podcast: Observe, Listen and Engage with the surrounding environment and identify a design challenge.

Task 3: Teams & Problems

- Start Design Challenge and learn about teams & problems through this
- Foster team collaboration, find inspiration from the environment and learn how to identify problems

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Task 4: Empathizing

- Continue Design Challenge and learn empathy
- Learn techniques on how to empathize with users
- Go to the field and interview people in their environments
- Submit Activity Card

Task 5: Ideating

- Continue Design Challenge and learn how to brainstorm effectively
- Encourage exploration and foster spaces for brainstorming
- Submit Activity Card

Task 6: Prototyping

- Continue Design Challenge and learn how to create effective prototypes
- Build tangible models and use them as communication tools
- Start giving constructive feedback to classmates and teammates
- Submit Activity Card

Task 7: Testing

- Finish Design Challenge and iterate prototypes and ideas through user feedback
- Evolve ideas and prototypes through user feedback and constructive criticism
- Get peer feedback on individual and group performance
- Submit Activity Card

Task 8:

Final Report Submission and Presentation

Note: The colleges may arrange for Guest Speakers from Various Design Fields: Graphic Design, Industrial Design, Architecture, Product Design, Organizational Design, etc to enrich the students with Design Thinking Concept.

REFERENCES:

- 1. Tom Kelly, *The Art of Innovation: Lessons in Creativity From IDEO, America's Leading Design Firm* (Profile Books, 2002)
- 2. Tim Brown, Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation (HarperBusiness, 2009)
- 3. Jeanne Liedtka, Randy Salzman, and Daisy Azer, Design Thinking for the Greater Good: Innovation in the Social Sector (Columbia Business School Publishing, 2017)

OTHER USEFUL DESIGN THINKING FRAMEWORKS AND METHODOLOGIES:

- Human-Centered Design Toolkit (IDEO); https://www.ideo.com/post/design-kit
- Design Thinking Boot Camp Bootleg (Stanford D-School); https://dschool.stanford.edu/resources/the-bootcamp-bootleg
- Collective Action Toolkit (frogdesign); https://www.frogdesign.com/wpcontent/
 uploads/2016/03/CAT_2.0_English.pdf
- Design Thinking for Educators (IDEO); <u>https://designthinkingforeducators.com/</u>

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - II Semester		L	Т	Р	С
I Year - II Semester		3	0	0	0
	CONSTITUTION OF INDIA (MC1204)				

Course Objectives:

- > To Enable the student to understand the importance of constitution
- > To understand the structure of executive, legislature and judiciary
- > To understand philosophy of fundamental rights and duties
- > To understand the autonomous nature of constitutional bodies like Supreme Court and high court controller and auditor general of India and election commission of India.
- > To understand the central and state relation financial and administrative.

UNIT-I

Introduction to Indian Constitution: Constitution meaning of the term, Indian Constitution - Sources and constitutional history, Features - Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy.

Learning outcomes:

After completion of this unit student will

- Understand the concept of Indian constitution
- Apply the knowledge on directive principle of state policy
- Analyze the History, features of Indian constitution
- Evaluate Preamble Fundamental Rights and Duties

UNIT-II

Union Government and its Administration Structure of the Indian Union: Federalism, Centre- State relationship, President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, LokSabha, RajyaSabha, The Supreme Court and High Court: Powers and Functions;

Learning outcomes:-After completion of this unit student will

- Understand the structure of Indian government
- Differentiate between the state and central government
- Explain the role of President and Prime Minister
- Know the Structure of supreme court and High court

UNIT-III

State Government and its Administration Governor - Role and Position - CM and Council of ministers, State Secretariat: Organisation, Structure and Functions

Learning outcomes:-After completion of this unit student will

- Understand the structure of state government
- Analyze the role Governor and Chief Minister
- Explain the role of state Secretariat
- Differentiate between structure and functions of state secretariat

UNIT-IV

A.Local Administration - District's Administration Head - Role and Importance, Municipalities - Mayor and role of Elected Representative - CEO of Municipal Corporation PachayatiRaj: Functions PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Block level Organizational Hierarchy - (Different departments), Village level - Role of Elected and Appointed officials - Importance of grass root democracy

Learning outcomes:-After completion of this unit student will

- Understand the local Administration
- Compare and contrast district administration role and importance
- Analyze the role of Myer and elected representatives of Municipalities
- Evaluate Zillapanchayat block level organisation

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT-V

Election Commission: Election Commission- Role of Chief Election Commissioner and Election Commissionerate State Election Commission:, Functions of Commissions for the welfare of SC/ST/OBC and women

Learning outcomes:-After completion of this unit student will

- Know the role of Election Commission apply knowledge
- Contrast and compare the role of Chief Election commissioner and Commissiononerate
- Analyze role of state election commission
- Evaluate various commissions of viz SC/ST/OBC and women

References:

- 1. Durga Das Basu, Introduction to the Constitution of India, Prentice Hall of India Pvt. Ltd.. New Delhi
- 2. SubashKashyap, Indian Constitution, National Book Trust
- 3. J.A. Siwach, Dynamics of Indian Government & Politics
- 4. D.C. Gupta, Indian Government and Politics
- 5. H.M.Sreevai, Constitutional Law of India, 4th edition in 3 volumes (Universal Law Publication)
- 6. J.C. Johari, Indian Government and Politics Hans
- 7. J. Raj IndianGovernment and Politics
- 8. M.V. Pylee, Indian Constitution Durga Das Basu, Human Rights in Constitutional Law, Prentice Hall of India Pvt. Ltd.. New Delhi
- 9. Noorani, A.G., (South Asia Human Rights Documentation Centre), Challenges to Civil Right), Challenges to Civil Rights Guarantees in India, Oxford University Press 2012

E-resources:

- 1. nptel.ac.in/courses/109104074/8
- 2. nptel.ac.in/courses/109104045/
- 3. nptel.ac.in/courses/101104065/
- 4. www.hss.iitb.ac.in/en/lecture-details
- 5. www.iitb.ac.in/en/event/2nd-lecture-institute-lecture-series-indian-constitution

Course Outcomes:

At the end of the semester/course, the student will be able to have a clear knowledge on the following:

- Understand historical background of the constitution making and its importance for building a democratic India.
- Understand the functioning of three wings of the government ie., executive, legislative and judiciary.
- > Understand the value of the fundamental rights and duties for becoming good citizen of India.
- Analyze the decentralization of power between central, state and local self-government.
- Apply the knowledge in strengthening of the constitutional institutions like CAG, Election Commission and UPSC for sustaining democracy.
 - 1. Know the sources, features and principles of Indian Constitution.
 - 2. Learn about Union Government, State government and its administration.
 - 3. Get acquainted with Local administration and Pachayati Raj.
 - 4. Be aware of basic concepts and developments of Human Rights.
 - 5. Gain knowledge on roles and functioning of Election Commission